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요   약 

확률적 경사하강법 (stochastic gradient descent, SGD)은 대규모 데이터에 대한 심층학습을 가능케 한

결정적인 기법으로, 지금까지 영상, 음성 등 모든 양식의 최첨단 심층학습 모델에 사용되고 있다. 이에 

따라, SGD의 특성을 분석하기 위한 다양한 이론적인 연구가 진행되고 있다. 특히 심층학습 모델의 확률

적 경사소음 (stochastic gradient noise, SGN)을 확률 과정으로 모델링하며, SGN의 실험적인 분포를 토

대로 SGD에 대응되는 확률과정의 특성을 분석하는 방향이 있다. 본 논문에서는 그래프 신경망 (graph 

neural network, GNN)에서 SGN의 통계적인 특성을 분석하고자 한다. GNN은 일반적인 신경망 (neural 

network, NN)과 달리, 노드의 차수 (degree) 분포와 같이 그래프 데이터가 가지는 고유한 특성이 존재하

기 때문에, 이와 같은 특성이 SGN의 양상에 영향을 미칠 것으로 예상한다. 본 논문에서는 흔히 쓰이는 

Cora 벤치마크에서 실험을 통해 GNN 위에서 SGN이 어떤 분포를 따르는지 파악한다. 또한, 다양한 분석

을 통해 이를 직관적으로 설명하고, 이를 토대로 향후 GNN 연구 및 실무를 돕기 위한 통찰을 제공한다. 

1. Introduction

1.1. Stochastic Optimization

Most of the key tasks in machine/deep learning can be 

expressed as the following optimization problem: 

where 𝑓𝑓(𝑖𝑖) is the individual loss contributed by each data

point xi . Such optimization is usually solved via some

gradient-based method, and one such (first-order) algorithm 

is gradient descent (GD). But in recent years we are seeing 

an explosion in the number of datas (so-called “big-data 

era”), and thus a naïve GD is too computationally inefficient. 

Thus, its stochastic version, called the stochastic gradient 

descent (SGD), is widely used. (see [1], for instance, for a 

comprehensive review) 

1.2. Modeling SGN 

Other than its computational efficiency, it has been 

empirically confirmed that the noises of SGD actually 

contribute towards better generalization capability of the 

resulting model. From a theoretical perspective, this is still a 

mystery, and numerous methodologies have been employed 

to shed light on this rather surprising phenomenon. 

One method of analysis is regarding SGD as discretization 

of some continuous stochastic differential equation (SDE), 

driven by some stochastic process. Such continuous analysis 

allows one to utilize tools from a rich literature of statistical 

physics, probability theory, and more to elucidate the 

unreasonable efficiency and efficacy of SGD. To see this, we 

first rewrite SGD as: 

where ∇ft�(w) = (1/|𝛺𝛺𝑡𝑡|)∑ 𝛻𝛻𝑓𝑓(𝑖𝑖)(𝑤𝑤)𝑖𝑖∈𝛺𝛺𝑡𝑡  is the stochastic

gradient at iteration 𝑡𝑡 , and Ut(w) = ∇F(w) − ∇fk�(w)  is the

stochastic gradient noise (SGN). Note that each fixed iteration 

t, Ut is a random vector of zero mean.

Depending on the empirical observation and/or modeling 

assumption, one can either choose to model Ut as normal or

heavy-tailed. The distinction comes from whether we assume 

that the (co)variance of SGNs is finite or infinite. Depending 

on the modeling assumption, the behavior of the SDE differs 

greatly, and so does the theoretical analysis of the SGD [2]; 

especially the explanation of why SGD favors flat minima 

becomes vastly difference. [2,6] argued for the heavy-tailed 

theory of SGN, invoking several results from Levy-driven 

dynamical systems in statistical physics literatures [3]. From 

min
𝑤𝑤

𝐹𝐹 (𝑤𝑤) ≜ min
𝑤𝑤

 
1
𝑛𝑛  �𝑓𝑓(𝑖𝑖)(𝑤𝑤)

𝑛𝑛

𝑖𝑖=1

( 1 ) 

wt+1 = wt − η∇ft�(wt) = wt − η∇F(wt) + ηUt ( 2 ) 
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a rather different perspective, [4] argued for multivariate, 

state-dependent Gaussian theory of SGN, invoking diffusion 

theory from statistical physics. 

However, their justifications are too simple and heuristic. 

Indeed, all the papers mentioned above only provided 

qualitative observations, namely the histograms of SGNs. 

Especially, [5] criticized the heavy-tailed theory in that 1. the 

alpha estimator used is true only when the distribution is 

known to be stable alpha distributed, and 2. the assumption 

that SGNs are coordinate-wise i.i.d is invalid, as the training 

procedure somehow entangles the individual coordinates with 

one another. However, even in [5], the authors did not 

perform rigorous statistical tests other than the normality tests, 

and it isn’t clear whether the normality test deployed considers 

the multivariate nature of the SGNs. Also, [4] did not provide 

any results, not even qualitative, for the structure of SGN in 

mid-training phase; they only considered the initial iteration. 

Recently, [6] provided the first precise statistical analysis 

into SGN of several old/modern deep architectures, and the 

authors found that the SGNs are actually best described using 

lognormal distribution. Arguably, their methodology is the 

most scientific way of exploring the suitable assumptions for 

SGNs, and thus we also employ it in this work. 

1.3. (Stochastic) Optimization of GNN 

Despite the abundance of literature in analyzing/modeling 

SGD as SDE, not much work has been done that analyzes the 

stochastic optimization trajectory of GNN training, let alone 

even deterministic optimization algorithms. [7,8] considers 

the convergence analysis of gradient descent for GNNs; they 

do not consider any stochastic variants. 

We are the first to consider the nature of stochastic 

optimization of GNNs. Precisely, we provide a preliminary 

answer to the following question: What are the statistical 

properties of SGNs stochastic training of GNNs? 

2. Problem Settings

2.1. Semi-Supervised Node Classification

We follow discussions of [9]. Given a graph G = (V, E),

each v ∈ V is given a feature 𝑥𝑥𝑣𝑣 ∈ ℝ𝑑𝑑 . Let S ⊆ V be the

labeled vertices, which consists our training set: {(𝑥𝑥𝑣𝑣,𝑦𝑦𝑣𝑣)}𝑣𝑣∈𝑆𝑆.
The goal of semi-supervised node classification is to predict 

the labels of the remaining nodes in V\S.

2.2. Graph Neural Networks (GNNs) 

We consider two types of GNN; graph convolutional network 

(GCN; [9]) and graph isomorphism network (GIN; [10]), both 

of which is one of the most popular GNN architectures. Their 

main difference lies in the aggregator function that they use. 

GCN makes use of the (normalized) average aggregator while 

GIN makes use of the sum aggregator. 

2.3. Node Sampling and SGD for GNNs 

To enable efficient computations, sampling is employed. 

There are two main methods of sampling: node batching and 

neighborhood sampling. For clarity, we only consider 

uniformly random node batching and always make use of the 

entire neighbors. Indeed, it is an interesting and important 

future direction to see the effect of neighborhood sampling 

and/or non-uniform sampling (e.g. importance sampling), as 

such techniques are known to induce variance reduction and 

even faster convergence [11,12]. 

3. Experimental Settings

3.1. Downstream task, Architectures

We consider the node classification task on the Cora 

dataset. Cross entropy loss is used, and we use GCN/GIN 

with three message passing layers and ReLU nonlinearity. 

3.2. Statistical tests 

Every certain epoch, we sample 1000 random batches, 

compute and store the norms of the corresponding SGN 

vectors. For simplicity, we show here the results for only initial 

and final phases of training. 

We employ QQ-plots that compares the collected SGNs to 

some predefined distribution; the considered distributions are 

normal, lognormal, Pareto (power law), exponential, and 

stretched exponential (Weibull). We use Python’s powerlaw 

package [13] to ensure the best possible fit for the last four 

distributions. Using other statistical tests such as empirical 

mean residual life, or even developing suitable multivariate 

distribution testing is left for future work. 

4. Results

The results for GCN and GIN are shown in 그림 1,2,

respectively. Each 그림 has two rows, one for the initial 

phase and one for the final phase. Several observations can 

be made; firstly, for all considered situations, normal and 

Pareto (power law) distributions do not have good fit, while 

lognormal distribution has somewhat good fit overall. This is 

in line with the observations made in [6] for image 

classification tasks. 

Overall, there are more than one distribution that seems to 

provide good fit for each situation (ex. initial phase of GIN 

seems to be well-fitted by chi-squared, lognormal, and 

Weibull). One can also observe that the chi-squared fitting 

establishes a distinction between the SGN of GCN and GIN; 

the latter very well fitted, while former is not! Lastly, if chi-

squared is the best distribution, it suggests that the SGN  
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for GCN should be modeled as multivariate Gaussian. 

5. Conclusion and Future Works

In this paper we provide preliminary statistical analysis of

SGN of GNNs. From theoretical perspective, the most 

interesting question would be to see whether specific graph 

properties can be analytically incorporated into the dynamics 

of SGD for simple GNNs with simple losses such as MSE. 
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그림 1 QQ-plots of SGN of GCN training. Top row is for the initial phase and bottom row is for the final phase. 

그림 2 QQ-plots of SGN of GIN training. Top row is for the initial phase and bottom row is for the final phase. 
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