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1. Introduction
1.1. Stochastic Optimization

Most of the key tasks in machine/deep learning can be
expressed as the following optimization problem:

n
mmi/nF(w)émMEn%Zf(i)(w) (1)

i=1
where f® is the individual loss contributed by each data
point x; . Such optimization is usually solved via some
gradient-based method, and one such (first-order) algorithm
is gradient descent (GD). But in recent years we are seeing
an explosion in the number of datas (so-called “big—data
era”), and thus a naive GD is too computationally inefficient.
Thus, its stochastic version, called the stochastic gradient
descent (SGD), is widely used. (see [1], for instance, for a
comprehensive review)

1.2. Modeling SGN

Other than its computational efficiency, it has been
empirically confirmed that the noises of SGD actually
contribute towards better generalization capability of the
resulting model. From a theoretical perspective, this is still a
mystery, and numerous methodologies have been employed
to shed light on this rather surprising phenomenon.

One method of analysis is regarding SGD as discretization
of some continuous stochastic differential equation (SDE),
driven by some stochastic process. Such continuous analysis
allows one to utilize tools from a rich literature of statistical
physics, probability theory,
unreasonable efficiency and efficacy of SGD. To see this, we
first rewrite SGD as:

and more to elucidate the

Wiy = Wy — nVE(w) = we —VF(wy) +nU; (2)

where  VE(w) = (1/12:) Ziea, VfP W) is the stochastic
gradient at iteration t, and Ug(w) = VF(w) — Vi (w) is the
stochastic gradient noise (SGN). Note that each fixed iteration
t, U is a random vector of zero mean.

Depending on the empirical observation and/or modeling
assumption, one can either choose to model U, as normal or
heavy—tailed. The distinction comes from whether we assume
that the (co)variance of SGNs is finite or infinite. Depending
on the modeling assumption, the behavior of the SDE differs
greatly, and so does the theoretical analysis of the SGD [2];
especially the explanation of why SGD favors flat minima
becomes vastly difference. [2,6] argued for the heavy—tailed
theory of SGN, invoking several results from Levy-driven
dynamical systems in statistical physics literatures [3]. From

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded

by the Korea government(MSIT) (No.2019-0-00075, Artificial In
Institute of Information & communications Technology Planning &

telligence Graduate School Program(KAIST), 10%) and the
Evaluation(lITP) grant funded by the Korea government(MSIT)

(No. 2022-0-00871, Development of Al Autonomy and Knowledge Enhancement for Al Agent Collaboration, 90%).

1025



20223 =7 FH

o\

Ft=dl s =+3

a rather different perspective, [4] argued for muitivariate,
state—dependent Gaussian theory of SGN, invoking diffusion
theory from statistical physics.

However, their justifications are too simple and heuristic.
Indeed, all the papers mentioned above only provided
qualitative observations, namely the histograms of SGNs.
Especially, [5] criticized the heavy-tailed theory in that 1. the
alpha estimator used is true only when the distribution is
known to be stable alpha distributed, and 2. the assumption
that SGNs are coordinate-wise i.i.d is invalid, as the training
procedure somehow entangles the individual coordinates with
one another. However, even in [5], the authors did not
perform rigorous statistical tests other than the normality tests,
and it isn’t clear whether the normality test deployed considers
the multivariate nature of the SGNs. Also, [4] did not provide
any results, not even qualitative, for the structure of SGN in
mid—-training phase; they only considered the initial iteration.

Recently, [6] provided the first precise statistical analysis
into SGN of several old/modern deep architectures, and the
authors found that the SGNs are actually best described using
lognormal distribution. Arguably, their methodology is the
most scientific way of exploring the suitable assumptions for
SGNs, and thus we also employ it in this work.

1.3. (Stochastic) Optimization of GNN

Despite the abundance of literature in analyzing/modeling
SGD as SDE, not much work has been done that analyzes the
stochastic optimization trajectory of GNN training, let alone
even deterministic optimization algorithms. [7,8] considers
the convergence analysis of gradient descent for GNNs; they
do not consider any stochastic variants.

We are the first to consider the nature of stochastic
optimization of GNNs. Precisely, we provide a preliminary
answer to the following question:
properties of SGNs stochastic training of GNNs?

What are the statistical

2. Problem Settings
2.1. Semi—Supervised Node Classification

We follow discussions of [9]. Given a graph G = (V,E),
each veV is given a feature x, € R%. Let SCV be the
labeled vertices, which consists our training set: {(x,, V) }ves-
The goal of semi—supervised node classification is to predict
the labels of the remaining nodes in V\S.

2.2. Graph Neural Networks (GNNs)

We consider two types of GNN; graph convolutional network
(GCN; [9]) and graph isomorphism network (GIN; [10]), both
of which is one of the most popular GNN architectures. Their
main difference lies in the aggregator function that they use.
GCN makes use of the (normalized) average aggregator while

GIN makes use of the sum aggregator.

2.3. Node Sampling and SGD for GNNs

To enable efficient computations, sampling is employed.
There are two main methods of sampling: node batching and
neighborhood sampling. For clarity, we only consider
uniformly random node batching and always make use of the
entire neighbors. Indeed, it is an interesting and important
future direction to see the effect of neighborhood sampling
and/or non-uniform sampling (e.g. importance sampling), as
such techniques are known to induce variance reduction and
even faster convergence [11,12].

3. Experimental Settings
3.1. Downstream task, Architectures

We consider the node classification task on the Cora
dataset. Cross entropy loss is used, and we use GCN/GIN
with three message passing layers and RelLU nonlinearity.

3.2. Statistical tests

Every certain epoch, we sample 1000 random batches,
compute and store the norms of the corresponding SGN
vectors. For simplicity, we show here the results for only initial
and final phases of training.

We employ QQ-plots that compares the collected SGNs to
some predefined distribution; the considered distributions are
normal, lognormal, Pareto (power law), exponential, and
stretched exponential (Weibull). We use Python’s powerlaw
package [13] to ensure the best possible fit for the last four
distributions. Using other statistical tests such as empirical
mean residual life, or even developing suitable multivariate
distribution testing is left for future work.

4, Results

The results for GCN and GIN are shown in & 1,2,
respectively. Each & has two rows, one for the initial
phase and one for the final phase. Several observations can
be made; firstly, for all considered situations, normal and
Pareto (power law) distributions do not have good fit, while
lognormal distribution has somewhat good fit overall. This is
in line with the observations made in [6] for image
classification tasks.

Overall, there are more than one distribution that seems to
provide good fit for each situation (ex. initial phase of GIN
seems to be well-fitted by chi—-squared, lognormal, and
Weibull). One can also observe that the chi-squared fitting
establishes a distinction between the SGN of GCN and GIN;
the latter very well fitted, while former is not! Lastly, if chi-
squared is the best distribution, it suggests that the SGN
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8 2 QQ-plots of SGN of GIN training. Top row is for the initial phase and bottom row is for the final phase.

for GCN should be modeled as multivariate Gaussian.

5. Conclusion and Future Works

In this paper we provide preliminary statistical analysis of
SGN of GNNs. From theoretical perspective, the most
interesting guestion would be to see whether specific graph
properties can be analytically incorporated into the dynamics
of SGD for simple GNNs with simple losses such as MSE.
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